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A Convergence Analysis of an H-Version Finite Element Method
with High Order Elements for Two Dimensional

Elasto-Plasticity Problems

Y. Lil & I. Babuik&2

Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742

Abstract

In this paper, we will give an h-version finite element method for a two dimensional nonlinear
elasto-plasticity problem. A family of admissible constitutive laws based on the so-called gauge
function method is introduced first, and then a high order h-vmsion semi-discretization scheme is
presented. The existence and uniqueness of the solution for the semi-discrete problem are guaranteed
by using some special properties of the constitutive law, and finally we will show that as the maximum
element sise h - 0, the solution of the semi-discrete problem will converge to the solution of the 0
continuous problem. The high order h-version discretization scheme introduced here is unusual. If
the partition of the spatial space only has rectangles or parallelograms involved, then there would not
be any limit on the element degree. However, if the partition of the spatial space has some triangular
elements, then only certain combinations of finite element spaces for displacement and stress functions
can be used. The discretisation scheme also provides useful idea for applications of hp-version or high
order h-version finite element methods for two dimensional problems where the elasto-plastic body is y Codes
not a polygon, such as a disk or an annulus. _ _ Codes

Dist Special

1 Introduction 
i

Several papers about finite element methods with some theoretical convergence ysts res ts or

two dimensional elasto-plasticity problems have been published in the engineering literature, such as the

work of Bonnetier [3], Johnson [10] [11], and Miyoshi [14]. However, in all these approaches, the shape

of the domain is assumed to be polygonal and is partitioned into several triangles. The displacement

functions are approximated by piecewise linear functions, and the stress functions are approximated

by piecewise constant functions. This choice of finite element spaces for the displacement and stress

functions makes it easy to use the constitutive law, because both the strain and stress functions will be

piecewise constant, and each element can therefore be defined as in either its elastic or plastic state.

However, for smooth solutions or over sub-regions where the solution is smooth, higher order polynomial

spaces are usually preferred. Moreover, if the domain under consideration has a special shape, such as a

rectangular domain or an L shaped domain, then we can just use rectangular elements in the partition.

For rectangular elements, we have to apply piecewise bilinear approximation for the displacement function

in order to obtain a conforming finite element method. In this case, the corresponding strain functions are

piecewise linear instead of piecewise constant. Hence the stress function can no longer be approximated

by piecewise constant functions, and we can no longer define a whole element as elastic or plastic. As

we will see, the design of a scheme to choose an appropriate constitutive law on high order elements is

an important and subtle problem.

'Partially supported by NSF grant DMS-91-20877 & ONR grant.
2Partially supported by NSF grant DMS-91-20877.



A family of admissible constitutive laws based on the so-called gauge function method was first

introduced by Bonnetier [3]. An h-version method with piecewise linear displacement function for prob-

lems based on a constitutive law of this kind has been presented in his work. This paper presents a high

order h-version finite element method for elasto-plasticity problem based on an admissible constitutive

law. An unusual method to define the constitutive law over each element is proposed. The convergence

analysis shows that the limit function is guaranteed to satisfy the constitutive law over the whole domain.

Two types of elements, namely rectangular and triangular elements, are discussed. In addition, some

possible generalizations of our method are also mentioned.

2 A Family of Admissible Constitutive Laws for Two Dimensional
Problems

The family of constitutive laws that will be introduced below is based on the following two basic

assumptions:

1 ) Existence of a convex yield surface.

2) The normality condition: the plastic increment is proportional to the outward normal to

the yield surface during plastic flow.

There are two main reasons why we choose this family of constitutive laws. First, they are actually

a generalization of some of the most commonly used engineering formulations. Second, Bonnetier has

shown that the continuous problem based on this faraily of constitutive laws will be well posed.

For two dimensional problems, we will describe a yield surface by the stress tensor U= (011, 022, 012) T,

and a set of hardening parameters (sometimes also called internal parameters):

a = (al, 0 2 ,..., oI )T C U C ]R"

where U is a convex set in Rm .

The elastic set is assumed to be convex, and hence we can think of a function F ( a , o ) which is a

convex function of a and a as the gauge function of this convex set. More precisely we assume that

there exists a function F : R3 x U P-+ R such that

Al). F (a, a) is a convex, and piecewise analytic function of a, a. (2.1)

A2). F(0,0) = 0. (2.2)

A3). There are constants ,r > 0 such that -y < IOF OF I < r (2.3)

uniformly on the set {(a, a) I F (a, a) = Zo I for some

Zo > 0.

where OF = (OF OF )' OF' T and OF= (OF OF OF " T

Oa ai' 2202 TO T0'02; a
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The corresponding constitutive law can then be derived by using the two postulates mentioned

earlier. Let ( o, a ) be inside the yield surface, i.e., F (o, a) < Zo. Then the material is aasumed to

be elastic. Therefore the stress and strain rates must satisfy Hooke's law, and there is no change in the

hardening parameters. So
(uDi

(2.4)ff0

ar lowhere r C , - etc, and D is the usual elasticity tensor. In plane stress problems, for

instance, the elasticity tensor has the form:

I V 0 ]

D E 1 0
12=

0 0 1__•
2

where E and v are the Young's modulus and the Poisson's ratio of the material.

If the point (a,o) lies on the yield surface when t = to, i.e. F(a,o) (to) = Zo, and will move

towards the inside of the yield surface afterwards, then we still say that the material is elastic at t = to.

So the stress, strain and hardening parameter rates will still satisfy the equation (2.4).

If the point (o , a) lies on the yield surface when t = to , and will remain on the yield surface
for to _ t : to+6, i.e. F(a(t),a(t)) = Zo, Vt E (to,to+6), then wesay that the material is

plastic at t = to and we will split the strain rate 1 into elastic and plastic parts

i = e + ip, (2.5)

and assume that the elastic part is still related to the stress rate by the Hooke's law

& = D i = D(i - i"). (2.6)

Then by the normality condition 3 A > 0 such that

= A 4i] (2.7)

During the plastic flow, (a (1), & (I)) still remain on the yield surface, therefore differentiation of

the equation F(o(t),a(t)) = Zo with respect to time i yields

OFT . OFT .
O-F T + -O a = o. (2.8)

3



Using (2.6), (2.7) and (2.8), we can eliminate iP to obtain:

OF OFT
Dr-- D

D FT OF + _OFT OF

(2.9)
OFT.
= -- OF

O FT OF act

Ta wo-

Hence, the constitutive equations based on the gauge function F ( o, a) read

for (o,a) E C (2.10)

f =.DO.FO.FTD ]
If[ D .FTO.F + O, FTDU•F1

Lt = - 8, FTa0,F + Ffor (o,a) E P (2.11)
- _ O. FT& OFz

where

C= (0,a) I F(o,)< ZD or F(e,a)= Zo and L- T _<0 (2.12)

and

P=f(o,o) F(o,a)=Z0 and OFT& >0 . (2.13)
80o 1 -

The three assumptions Al)-A3) on the gauge function F(o ,a) are essential for the proof
of the existence and uniqueness of the solution. Actually from the assumption A3), we can get the

following:

Proposition 2.1 Let 6 = A(o,o,i) , where A is the constitutive operator defined by (p10)
and (2.11). Assume that the gauge function F ( o,,a) satisfies the assumption A3). Then there ezist
constants 0 < 7' < r' independent of the values of a, a and i such that for any (o, a) E ]0 x U
and any i E ij.3

1'li12 5 A((,oa,i)Ti < "r'Ji2 . (2.14)

PROOF: Any vector 1 = ( , i22, 2 ) T, can be decomposed into a sum of two vectors, one parallel

to &5F , and the other orthogonal to OF , with respect to the scalar product (a , b) = (Da , b) -

aTDb, i.e.

- + i + (2.15)

4



with . f< 8,F,5F >-5< 80Y, > 8,F

= (8.FTDD.F)-I(8,FTDi)8,F

and
(Di-L", )fi 0. (2.17)

Since D is positive definite and independent of the values of c , a and i, it is sufficient to show

that there are constants 0 < -,' < r' such that

y'(i, 1) _< A(ua,)Ti < r'(i, i). (2.18)

Now suppose the material is elastic, then the constitutive operator A is defined by (2.10), and we get

AA(o,a,i)Ti = (Di, 1) = (i, 1). (2.19)

Otherwise, if the material is plastic, the constitutive operator A will be defined by (2.11) and we can

let

I. = [Oc FT0aF + & FTD D ]- 1 ,

and get and tA(Cr,,)Ti = [(D - pD8,F0uFTD)i,c]

= ( - u(D.FTDi)OuF, )

= (i',c')+( ( -I,(8,FTD )OF, 1).

From the definition of 1 , we have

A(aa,,)Ti = (-L , i') + (I- ju(8,FTD8,F))( ',i')

= (i',1-) + p(8&FT8,F)( , I).

By virtue of the assumption A3), the term I& &,FTOF is bounded from below and above:

72

r 2 (1 + IIDII) s (9..FT&F) ( 1

2
which shows that (2.14) holds for 7-' and r'r = 0r2(j +IjDjJ)
Definition 2.1 The family of the constitutive laws (2.10),,. (2.13) based on the gauge function of the

yield surface, F (a, a) which satisfies (2.1) -- (2.3) will be called admissible constitutive laws or briefly

admissible laws.

As we mentioned earlier, the admissible constitutive laws are actually a generalization of some of
the most commonly adopted engineering formulations. For instance, the kinematic hardening law for

two dimeitsional problem (also called Ziegler's rule), can be formulated as follows:

5



Let - (01 ,0j12,0 12 )T be the hardening parameters, and ? > 0 be the constant coefficient of

hardening rate. The Von Mises surface is chosen to be the yield surface, and it has the form:

f(,- P) = Zo (2.21)

with Zo > 0 a constant and

f (a) = + '42 - i,,r22 + 3,)2'.

The constitutive equations based on Ziegler's rule then take the form:

Sb=Di if f(o- /) < Z. S0 
or f(v-1))=Zo and OfT i <0

= -(11+ ofT"Daj)-1(Daj/a.TD)]• Cif f(v-#)=Zo and af8 T4 > 0  (2.23)af T
zo

with the rate of the plastic strain defined as:

•p = ,1 (afT& )af. (2.24)

Now let R be the matrix
4/3 2/3 0

R= 2/3 4/3 0

0 0 1/3

and V'WL be one of its square roots. We can then define another set of hardening parameters a =

(VJ17 v/ )- /, and a gauge function of the form:

F(a,a) = f(o, - vW -vR-ca). (2.25)

Obviously the gauge function F (c,a) defined by (2.25) is a convex and analytic function of a

and a , and satisfies the equation F(0,0) = 0 . A simple computation also shows that on the set

{ (�, a) ER 3 W ItX [ F (a, a) = Zo) ,the derivative 8aF satisfies the inequalities

1< Ia.I <F! v2.

Since R is positive definite, 00 F = - .•/-jv¶R F is also bounded uniformly on this set. Hence the

gauge function F satisfies all three of our assumptions. It is not difficult to check that in (2.10) ' (2.13),

if we use the gauge function F defined as in (2.25), we will then get a set of constitutive equations which is

equivalent to the equations (2.22) and (2.23) after the variable substitution a = (V',q vf )-1 0. Hence

we can consider the kinematic hardening law as a particular case of our general admissible constitutive

latws.

6



Similarly the two dimensional pure isotropic hardening law can be cast into our admissible form by

using a gauge function of the form:

F(a,a) = /(a)- h(a),

where a E U C R is the isotropic hardening parameter and h ( a) is a concave monotonically increasing

function of the variable a with h(0) = 0.

3 Two Dimensional Quasi-static Elasto-Plastic Problems with Con-
stitutive Law Based on A Gauge Function Method

A typical two dimensional quasi-static Y

elasto-plastic problem with the constitutive

law based on the gauge function method can

be formulated as follows:

Let fl , a bounded domain in R2 n Ul (Z, )

(cf. Figure 3.1), be the reference config- ( )

uration of an elasto-plastic body. We de.-

note by U = (Ul , U2) the displacement 0

field of the body where UI (z, y), U2 (z, y) \a

are the displacements at the point (z, y)

in the x and y directions respectively. Let

a' = (0111 , a 22 ,a] 2 )T be the stress tensor, FIGURE 3.1 A bounded domain in R2

where al and 02 2 are the normal stress in the x and y directions, and a 1 2 is the shear stress. We

will use f = (C1 ,•22,C12 )T to denote the strain tensor, where the normal strains ell and £22 and

the shear strain £12 are defined in the normal engineering formula:

e U - OU2 aUI OU2 (3.1)

Finally I = [0, T] will be the time interval of interest , and f = (f , f2 )T is the body traction acting

on the elasto-plastic body fl. Then a general two dimensional quasi-static elasto-plastic problem with

the constitutive law based on the gauge function method is as follows.

To find the displacement functions U (z , y, t) and the stress functions a' (z , y , t) , such that

a' ( x , y, t ) satisfies the following equilibrium equations:

aOl zyt Oal2
0''- "-0- 5--y(X'y't)=f1(X'y't).•i1_ ( z,,)....- 0loz2p2j)=i) a.e. on fl x I (3.2)

L_ ) f2(,Y,t)
I l lOl

7



with the boundary condition:

U 1 (zp,t)- =U 2 (z,y,t) = 0 for (z,y) E Dfl, (3.3)

and the stress function a ( z, y, t) defined by the following constitutive equations:

&(zy,t) = D• (z,y,t)
for (a,a) E C .(3.4)

{ (z,y,t) = (D - D')i(z,y,t)

{ (Z, ,t)= (OFT)(z'y' ,yt) for (o,0)E P (3.5)
(8oFTO.F) (z ,y,t)OF(zyt)

where D' is defined as

('xyt D& .FOF T D) (x,y1,) (3.6)
D'(z,p,t) = (&,FT&I9F + O°FTD8oF)(z,y,t) (

The stress, strain and hardening parameter functions satisfy the following initial conditions:

o'ij(T,y,O) =0 ; Ui(z,y,0) =0 i,j = 1,2 ,
(3.7)

ai(X,/,O) =0 i =1,2,...,m

Of course here we have to require that the body traction functions satisfy the compatibility conditions:

fA(z,y,0) =0, i = 1,2 . (3.8)

Finally ., 7P are the elastic and the plastic sets defined by:

r a{,Q E W xRfa,) < Zo or } (39)
I ~fla,a) =Zo & 0,FT(a'a)6o•0

P = (a,o) E R 3 XRm if f "aa)=Zo and (3.10)
f I (,FT(o,a))o > 0

For the above two dimensional elasto-plasticity problem, Bonnetier [3] has proved the following

theorem :

Theorem 3.1 If the gauge function F (a, a) is admissible, i.e. it satisfies all the three assumptions

A:I ).- A3), and if the body traction functions fi (x, y, t), i = 1,2 are in L2 (fl) for all fized t , and

piecewise analytic in t for (z, y) a.e. on f . Then the two dimensional elasto-plasticity problem

(3.2) ,- (3.10) has a unique solution. Moreover, the solution is also piecewise analytic in time t.

8



4 Semi-Discrete Approximation of the Quasi-Static Problem

Consider first a special case where fl C

R2 is a bounded domain which can be parti-

tioned into rectangles {T.) of size h and the

aspect ratios satisfy *o < a < a, where ao

and *I are independent of the element size

h . Let T& be such a partition, N be the

set of nodes of fl\ fl, and ( •. ) , n E N

be the piecewise bilinear basis functions such

that q4. = 1 at the node n and 0, =0

at other nodes.
FIGUtRE 4.1 A domain fl which can be

Denote by Qio (fl,) the set of contin- partitioned into several rectangles

uous piecewise bilinear functions defined over fl such that they equal zero on the boundary O il, i.e.

Q,0 4) IT. = ax + b y + cx
I h(z,y) Ian = 0

Thus any function H (x, V) in Q1,0 (f1h) can be written in the form:

H(x,y,) = O(xy)
nEK/

Meanwhile denote by Qi (fIj) the set of all piecewise bilinear functions defined over Rl, i.e.

= 1(z, Y) E L'(0l) h(ZI ) ITn = a x+ b y+ czy+ d}

Notice that the functions in QI (fI,) are not necessarily continuous over the domain f . Let A be
the total degrees of freedom of the finite element space Q1 (Wh) , and n 4n }, n e )V be the piecewise
bilinear basis functions of the space (j (fl,). So any function TI (x , y) in &1 (0h) can be expressed

in the form:

S=j

For piecewise bilinear functions, we can use four Gaussian points on each rectangular element. Then by
using the interpolation method, any function in the space Q1 (f0h) will be uniquely determined by its
values at these four Gaussian points.

Now we can formulate our semi-discrete plasticity problem as follows.

9



To seek the solution (U,o,o) ,such that for any fixed 9 , U= (Ui,U2)T E (Q,,o(flh)) 2

a = (all, 0'2, 012)T E Of ,a = (al ,a2, 9 ,. am )TE s(0h, and they are in the

form

Ui = E Ui,.(t) 0,.(z) with Ui,.EC°O'°(O,T) i=1,2

ai$= a oj,..(t)4 &(z) with oi, EC+o'00(0,T) i,j = 1,2

Oa= -ai,,1 (t)&(z) with oa,.4EC°0'0(0,T) /=l,...,m

where (C, 'C (0, T) is the set of functions, continuous on [0, T], and have a uniformly bounded right

derivative of any order at each point on [ 0, T ). The stress functions satisfy the equilibrium equations:

j V + n " (4.1)
1046•. 04 /,

a~l, +(022, W -) (1f2, 0-

Here the body traction f = (f, f12) is piecewise analytic in time and for each t E [0,T], f(.,t) E

L2(j)) . On each element, the corresponding constitutive equations are given by:

r F(()),0(4)) < Zo
k) - 0 k if or (4.2)

6f (4) = 0 8,PFT(!k)&(!k) _< 0

4r (•k) = (D - D') (ik) i (&ik) f F(o(ik),o(&)) = Zo

j FT(W i) if and (4.3)61 4) (8FT0.F) T.-T--) 0. F( ) 8FT(W i)8() > 0

where 4k (k = 1,2,3,4) E G and d is the set of Gaussian points of all the rectangles in the domain

Q , and

D'(.k) = (OF FOFD) (4.4)0,FTOF + 0, FTDO¢ (, .F44

The initial conditions are:

U(o,z)=o , 0(0,X)=0 , O(0,z)=o (4.5)

Of course here again we assume that the traction functions satisfy the compatibility conditions:

fA(O,x) = f 2 (OX) = 0

To simplify the statement of our proof, in the following context we will assume that the body

traction functions are analytic in time, and the gauge function F (a, a) is also analytic in a and

r . (Similar results still hold if f is only piecewise analytic in time, and F (a, a) is only piecewise

analytic in a and a.

10



5 Existence and Uniqueness of the Solution of the Semi-discrete
Problem

Note that U U, (U, U2 ) is chosen to be piecewise bilinear. From the relation between strain

and displacement (3.1), we know that the strain functions as well as the strain rate functions will be

piecewise linear. So now inst.ad of the whole element, we can define a Gaussian point *4 E G of a

rectangular element to be elastic at to (resp. plastic) if it satisfies (4.2) (resp. (4.3)) at the point lk.

Therefore from their values at the Gaussian points we can define the functions a , a, 6 and 6 to be

some piecewise bilinear functions.

Consequently we can now define the set of elastic Gaussian points and the set of plastic Gaussian

points as follows:

( F(a',a)(z)<Zo or
t= t(U3) =jx e G F(c,a)(z)=Zo and 0,F Di(U)(Z)O <0

and

P.= P(U) = {zEG IF(o,a)(z)=ZoandOeFTDc(U)(z)>O} , (5.2)

Of (u) Ou

where i (U) = e = (L-) = e (U), and ( is the set of all the Gaussian points in the domain fl.

Using the constitutive equations given by (4.2) and (4.3), we can easily verify the following:

Proposition 5.1 The elastic and the plastic Gaussian point sets, C and • , defined by (5.1) and

(5.2) can also be ezpressed in terms of the stress tensor: V U E (NHO (fl) )2, _

- F(o, a)(z) < Zo or (
-(U) -T E F(a,a)(z)=Zo & 4RFTio(U)(z)_O (5.3)

-A (0) I EF(oa)()= Zo and 8. FTr(U)(x) > 0(5.4)

wchere thc stress tensor i' (U) (z) is defined by the constitutive equations (4.2) and (4.3).

Let (- , • ) be the standard vector inner product defined on RI . For any given displacement

function U(z,t) and any Gaussian point E , by using (3.1) we can easily find the values of the

corresponding strain rate at that point, i (i, 1) . Then by using the constitutive equations (4.2) and

(4.3) we can find the values of the corresponding stress rate at that point, & (.i, t) . Hence at each

Gaussian point i , we can defined a functional G (U (&)) such that:

G(U(&)) = (&(UC•)),iCU(f))

For this functional, we can give the following Lemma which is important in the proof of existence and

uniqueness of the solution for the semi-discrete problem.

11



Lemma 5.1 Let (o(!k),&(ik)) E R3 x U be determined by equation (4.2) and (4.3). Then the

functional G(U(&k)) = (& (U(ik)), i(U( *))) , defined on the set (Q 1 ,o(T.)) 2 , is strictly convex.
Here T. is any rectangular element of the partition Th.

PLOOF: Let U,V E (Q1 lo(T,)) 2, 0 E (0,1) and W = eU + (1-)V. We define:

to{4 E TnA IF(o,a) <Zo)

P 1={•kvE Tn nAG1F(o,a)f=fZO,O.FTDI(U)>O, .FTDi(V)>O}

P2 E{•E T, n d F(c,a)=Zo,OoFTDi(U)<_O,8.FTDi(V)<_O}

P 3•E{keTnnG F(a,a)=Zo,,,FFTDc(U)>O,8,,FTDc(V)5 O}

P 4 ={xkETnG F(a,a)f=fZo, 8FTDi(U)5_0,aoFTDE(V)>0}

1). On 4o U P 2 , all three functions, U, V and W , are corresponding to the elastic state. So we get

G(W) = (&(W), (w))= (DI(W),!(W))

< e(DI(U),i(U)) + (l-0)(DI(V),I(V))

= (0(U),,i(U)) + (1-)(h6(V),&(V))

= #G(U)+(l-e)G(V) .

2). On P, , all three functions, U, V and W , are corresponding to the plastic state. Hence we have

G(W) = (,(W),i(W)) = ((D-D')�(W),!(W))
< 9((D-D')i(U),i(U)) + (1-6)((D-D')i(v),•(v))

= 9(i(U),i(U)) + (1-e)(b(v),e•(V))

= OG(U)+(1-0)G(V)

where D' is defined as (4.4) which is independent of the values of & and V, and only dependents on

the values of a and a.

3). On P 3 , we have the case where U is corresponding to the elastic state, and V corresponding

to the plastic state. Decompose the vector i = (ill, 622, i12 )T into a sum of two vectors, one parallel

to O9F (a (.i), a (:k)), and the other orthogonal to 8,F (a (4), a (4)) with respect to the scalar

product (., .) i.e.

i= +E (5.5)

and

(D , i 0)= 0 (5.6)

Obviously we have

{ 0(W) = G0(U)+ (i-B)c (V)

S(5.7)
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Casei. Suppose 0. FTD i (W) > 0, then

(6(w), (w)) = ((D -D)i(W),i())

= (i(W)- p8,FTDi(W)AoF,i(W))
=l ((w), il)

+ '(dw) - , ra.FTD(W)O.F,!'(W)),

where - (B.FTBOF-+8-FTDo8F)(V(hk),a(&(k)). Hence by the definition of c ' we have

(=(W), (W)) (i-(W),t'(W)) + K(8aFTD i(W)) 2 , (5.8)

where

K= 91FT D DoF o°Fr D 8,F + ooFr Oa F

is a positive number independent of the values of & and V'. From the fact that

{ 19FTDI(W) - 98oFTD!(U)+ (1-0)8,FTD!(V)> 0

DoFTDi(V) < 0

we get

0 < aOFTDi(W) < 08.FTDi(U)

On the other hand, by the convexity of the scalar product (.,.) and the equation (5.7), we have

(i L (W), i- (W)) < 0 (i-" (U), 11 (V)) + (1 - 0) (I • (V), 11 (V))

Hence the equation (5.8) becomes

(MW),•(W) < e(i-L(u),i.(U))+(I'e)(•iL(v),•J(v))

+0K(8aPTDi(U))
2

or

(a( 14W), ()) < 0 [('(U), i'(U)) + KC(8FT Di(U))2]

+(-9)(•(v),I(V))

Using (5.8) with W replaced by U (since o (U) corresponding to the plastic state), we finally have

Case2. Suppose 8Z, F TD i (W) < 0, then

(&(W),I(1'V)) = q )i~)

= (i'(W),'i(W))+( (W),i(4))

13



or( o D())( ((W),(W)) W (W)(w), (W)) + ( FTD(W))2  (5.10)

(8,F, 0F)

From the fact that

{ oFTD(w) = 8.FTDi(U) + (1-8)8,FTDi(V)

,FTDi(U) > o
we get

(1-)aoF TDi(V) <_ OWFTDi(W)

Hence (5.10) can be rewritten as

(U(w),W(W)) < (1-0) (-(V),I'(V))+ (-,F T D,(V))2 1
(OoF, 8,F)J

+ 0 (- (U), i" (U))

Replacing W by U in (5.8), we get

( +i" (U), 1-" (u)) _< (IF(U), i (u)).

Replacing W by V in (5.10) (since 0(V) is corresponding to the elastic state), we get

(M(V), i(V)) = (M'(v), i(v)) + (DFTDi(V))
2

(OF, OWF)

So again we get

(ar(W), i(W)) < (I - ) (i(M), (V)) + a (br(U),I( ))

4). On P4 , we can prove the same result by changing the roles of U and V in 3).

From the above discussion we see that the functional G (U (1k)) is strictly convex, and this com-

pletes our proof of the lemma. 0

Now let I = (I, 12) E ( L 2 (fl) )2 be the incremental body traction, we can define a functional
;is follows :

For any

let

Y(ff a,U) = (&,(U),i(U))dz - (f,U)dx (5.11)

where &(U) E (c•,(n&)) 3 is defined as in (4.2) and (4.3). Then by using the result of Lemma5.1, we

can easily prove the following theorem.
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Theorem 5.1 The functional '(u, a,.) defined by (5.11) on (HII ((1))2 ia strictly convex and coercive

over tje Space (QI'o(fl,)) 2 .

Pltoor: Because &(U) is piecewise bilinear, and i(U) is piecewise linear over fl , for any

rectagular element T. E T, we have that ( r (U), i (U) ) E Q2 (T.), where

Q2 (T) =h (z ) h+(z , a + a2 x + a+ y + 4 V (+ a2 + as 2 y

For the four points Gaussian quadrature, it is exact for any function in Q2, i.e. for any T. E 7, , we

have

4

T(6k(U),((U))d( = F •(h(U(&)),i(U(ik))) (5.12)
fT. k=1

where +k (k = 1,2,3,4) are the Gaussian points of the rectangular T, ,and wk (k = 1,2,3,4) are the

weighting coefficients.

From Lemma5.1, we know that the functional G(U(ik)) = (6 (U(&k)),i(U(ik))) is strictly convex

over (Q 1,o(T,))2. We also know that the weighting coefficients, wk (k = 1,2,3,4), are all positive.

Therefore for any U,V E (QIo(fl&)) 2 , 0 E (0,1) and W = 0U + (1- 0) V, we have

4

(,&(W), i(W))dx =, Wk(GW(1k)), (W(ik)))
k=1

4

= z Wk(G(8U(Zk) + (1-9)V(Ik)),i(OU(!k) + (1- #)V(1)))
ik=1

4 4

< k 0 U()) U(L)+ W 1 - )(bz(V() h

f • (&(U), i(U))dz + (1- 0)/• (6(V),i(V))dx

for any T,, E Th. Obhviously j j & dx is a linear functional of &. So .'( a, a,•) is strictly convex

over (QIo(fjh)) 2 .

To prove the coerciveness, take a sequence {U 1.)=l E (QIO(fl&)) 2 ', such that II &-, IIw(n) -- 00

as n -- oo . Then from Proposition 2.1, we know that there exists a constant t

(6'(U(:)),i(U(•)))> ?y'(i(U(ik)),i(U(k))) k = 1,2,3,4,

where -y is independent of the value of a,a,i and U(4).
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Hence, (ua,U.),,)- j (,•r(U,),•(U,))dz - j(ilY'`)dz

SWk(,((U,()k)))-(Ua( k)) (j, j U )dz
2 T.ET7 

-,
14

--

.((U) i (U.)) - .iIi ~g(j,> 1 nI ) I Q 1 f w 11 0 .O ff

by using the well known Korn's Inequality ( see, e.g. [4] [13] [8] ). Hence as II 11 iH% () "- 00, we have

' (a, a, U. ) - o 0, and the coerciveness is proved. 0

Now let us consider the following minimization problem

min .(o,a,U )= min 1 (5.13)
ireMi UH,. 2 nU) (U)),•-JI .(.

where HA = (Q,0o(flh) )2 Then from the previous theorem, we know that for any (v,a) E

(41(flh))3 X (41(fl&))m , F(o, a, U) is a strictly convex and coercive functional of 0 E H&

So the minimization problem (5.13) must have a unique solution U E H, . Therefore we can have the
following corollary:

Corollary 5.1 The functional Y(a, a,.) defined in (5.11) has a unique minimum over the space

By showing that the functional " ( a, a, .) is Frhchet differentiable on the space (Qio (flA)) 2,

we then have the following theorem:

Theorem 5.2 The minimum & of (5.13) is the solution of the following problem:

j(611, - + (1&12, 14 1=j(A, On)
it 0Z 1  Oz2S(n E AN (5.14)

fn 8a, 8X2 f

with the constitutive equations:

(4) =D(ik) J F(a(ik),a(:k)) < Zob~k)= •(k)if or (5.15)

6 (h) 0 a.FT(ik)hr(4k) <0

i '(+k) = (D - D')(:ik) i(k) ( F(a(ik),a(ijv)) = Zo

(, F T(*k)b k)4 ) ifi and (5.16)
61T(k (4 (--) L9,F(zfk) 8,FT(ik) b(:i) > 0

(87 70-..oF F)(-fk)

here ik E G is any Gaussian point in the domain R , and D' (1k) is defined as in (4.4).

16



Pitoor: Lot ,U E (QzA(f,)), v>0and W = U++v .Denote

(- IT [(b(W') I(W1))- (( U), (U)) (h( ),())] dx

4 ((W£ (4)), - (Wv ((&)) ) ( (U (4)), 1 (U (ik)))

(Ui 00)- i0 0

- ((i) (= 2,' •(k))
and

2v

We will discuss the following five different cases:

iE t = x Ec G F(cu(z),ca(x)) <Zo}

{ O.~FTDi(U) (:) > 0}
k E , = x { E I F(a(z),a(z))= Zo, 0,FTD .( ,)( z)> O

8vFTD!(W,)(x)> 0

{ a8'FTDi(U)(.T)-< 0
k 1E IN = z 6 G F( v(z),a(z))= =Zo, &F TrD i(W,,)(z) 5 0

&kE P - zE G I F(o(z),=x(z))=Zo, oF( )
I0. OFT D (W.) (z) < 0J
{ O°8FT Di(U)(z)-< O}

I k E = {Z e I F(v(z),a(z))= Zo, 8oF D ( U)(x) >°

&FT D i(W,) (z) > 0J

1). On the set to U P1, we have

h, () = (DI(U +v0), i(U + v))- (Di(U), (U))
2 v

or

h - - 2 (Di(k)'(4)) . (5.17)

2). Similarly on the set Pf', we have

h,(f)= -2 ((D OFTOF D F+8(DoF) (•.) (5.18)

3). On the set P , we can use the decomposition (2.15), (2.16),(2.17) and get

h(!)=- 1 --((W,),iW.,)) - (iU) - ,8,FTD!(U)a1,F,7(U)))
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-()- •,s.PTDi(U)OF, i(•))
M (((WO), i(W&)) -(0(U), i(U)))- 0(U), (i)

here 7 =7 ,FTD (U). So we get

2 2 v AWAY
22v(8 ~ ,8,F)(5.19)

From the definition, we know that on 1o• we have

{ •*FD(U) > 0

8.FTD(U)+vo.FT•D(6) <_ 0

Hence 171 = I FTD 1 (U)I 5vI 8oFTD i (#) I, and (5.19) yields

h.( 2 2 •(+q)+,, + ()(aF (O.F,8.F))

+vlAFTDI(#6)I I (jja.F,i(#))I (5-20)

3). On the set P4o', we have

h4(4) = (i (W.) - is FTDc(W,)8oF,F (W&)) - (i (U),&(U))
2 v

i )(4())- i-AFTD(W,)(AF,(U)+vi(W,))

From the definition of set r4, we have

{ 0FTDi(U)+voFTD!(4,) > 0

0oFTDi(U) < 0

which yields I8eFTD i (U)I v I OFTD (0) I. So finally we get

Ih•(i) 1: E(1 k),i(0)) + + (0))2

''((8,Fo. , i(U)>2 += +( ++) (521
2 v(8 F, (U)) (8OF,i,(40)) + V2 (0F, i(0)))2 )

< y(+(4),+(4)) + 2•svLoFi(4))1



Therefore using (5.17),(5.18),(5.20) ,(5.21) and the uniform boundedness of the gradient &,F, we can

get that

Ihv(b)l __ C(&(€( l)),i(0( 1,))) V¥ E H ", and k= 1,2,3,4

for some C > 0.

Hence finarly we get

I__ ) - J, (4r, 0, U-I-&(U)Qb)dz - j 1]

= k h& ( ik :5 (V(z),•())d ,0( k ) ( (h )

which means (Y(o ,a,.) is differentiable on (Qo (%l,) )2. Differentiating J" with respect to , we get

that the minimum & of (5.13) satisfies the system (5.14), (5.15) and (5.16). This completes the proof of

the theorem. 0

By using the results of Corollary 5.1 and Theorem 5.2, we can now prove the following theorem

about existence and uniqueness of the solution of the semi-discrete problem.

Theorem 5.3 If the body traction function f (z , t) is piecewise analytic in t, and for every fized

t E [O,TJ, f(z,t) E L2 (f)), then there is a unique 5oldtion for the ODEsystem (4.1), (4.2), (4.3)

and (4.4) satisfying the initial condition (4.5), and moreover the solution is piecewise analytic in time

t.

PRoor: We will prove this theorem in 4 steps. For the sake simpocity, we will assume that f ( z, t)

is analytic in t and F ( or, a ) is analytic in a and a. But the same result still holds when f and

F are piecewise analytic.

Step 1. Here we will assume that at the beginning the material is in its virgin state. So at all the

Gaussian points the material is elastic until a time t = to when F (0, a) (ik, to) = F (o', 0) (4k, to) =

Zo at some Gaussian points of some elements. Denote by GI the set of those Gaussian points and G

the set of all the Gaussian points of 1,h . Then for t E [0, to) , all the points are elastic, and we just

have a classical linear elasticity problem. So the problem will have a unique analytic solution over the

timeinterval 1O,t 0 ).

Step 2. As we will see in the following proof, the points of the set c5\d will remain elastic after

to. But those of 0 1 may or may not yield after to. To determine this we have to check the sign of

0OF T (a,o)&(ik ,to + 0). Consider an auxiliary equation system such that (a' ,U0) E (Q0(0hj) 3 X

(QsI,(fl) )2 would solve at to + 0.
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J 9 + C1 8 )J= !I(I (to +0), )__ (,,, )+ ( ;,,

n CE j(5.22)
('91,, 9-= + (•, 0212 !t82 =X U20 +o0), 0)

with the conatitutive equations:

al( OW Del (4k) V kE G\G (5.23)

or' u ( ) D el ( )E X ( 5 .2 4 )

1. '(4 (D -D)() Vik E (5.24
where

f?.. = E & I .oFT (to)Dt(U')(1) < 0}

bi. = {E E •, i 8,FT (to)De(U')(1) > 0}

a'd= D'(z, to) = DOFOFTD

0. Ff 8,F + 8,FTrD8 .F(to

From Corollary 5.1 and Theorem 5.2, we know that there exists a unique solution (a", Ul) of the
equation system (5.22), ,(5.24).

Step 3. Now we can define the sets

G• I{ E G1  I PFT(ito)a'(i) > 0}

I c=c{ ,1 I 8.FT(i , o)Q'(i) _ 0}

and consider the following initial value problem starting at t = to

t ( 8,,, I, =),24L, (t),

fx i 1TIO2 n E AP(525(,'2,, '04n, + (622, !to-* =(...2('5)

r (&k) = Di(*k)
V ik E G\GI (5.26)S(10) 0

hr(4) (D- D')(ik)

_4 .FT(! )&(-4 ) . .... V Zlk E (5.27)

SFT(4 k) , F( 4 )D@F(Z
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with (•)= E(U (z))

D8,rF (h,) OJFT (&k) D

D' (&k) = 8, 2 (h)8.F(ik) + 417 (Mk)D8*F(-fk)

and the initial conditions:

(,,)(,to) = ,,)((5.28)

Now we can show that the initial value problem (5.25),-(5.28) has a unique analytic solution (U, uo, a)

on the interval [to, to + 6 ) with some 6 > 0, and moreover

(0 1b) 10+0 = (U' 1,7 )

where (U1 ,a') is the solution of the problem (5.22) -(5.24).

Indeed , substituting (5.26) and (5.27) into (5.25), because of the assumption that the gauge function

F (u, a) is an analytic function of a and a , we will get an equation in & with analytic coefficients.

On the other hand from Proposision 2.1, we know that D and D - D' are positive definite matrices.

Therefore there exists a unique solution U which is analytic on a interval [ to, to + 6) for some 6 > 0.

For the stress and the hardening parameter functions (a , a), again because of the analytic assumption

of the gauge function F (a , ), we can write (5.26) and (5.27) as a system of ODE's in the form

d : = A (a,a, t) (5.29)

where A (a, a, t) is an analytic function of a, a and t. Therefore (5.29) would have a unique analytic

solution over the interval [ to, to + 6 ) satisfying the initial conditions (5.28).

The solution of problem (5.22) (5.24), (U' ,U' a , satisfies the following problem at to + 0

r o = */ + ( ,( +l o),,o)
n•E•N (5.30)

0'21, 1 L )- + (oahI 'l Itox 02 ,U2(/(to + 0)., O)

where
w a'(ik) = Dc'(ik) V E G\G.

a' (() = (D -D') ' (4) 
Vi E &

with Ut E (Q1,o(flh) )2 By virtue of Theorem 5.2, this problem has a unique solution. On the other

hand, (U, dr) , the derivative of the solution of problem (5.25) (5.28) with respect to time t also

satisfies (5.30) - (5.31) at to + 0, therefore we have (iU, 6') 110+0 = (U1, a7 ).

Step 4. In this step we will show that there exists a constant i > 0 , such that at any Gaussian point

1k , if it is elastic (or plastic) at the time t = t o + 0, then it will still be elastic (or plastic) over the

time interval [to,to+S).
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a). For any Gaussian point &jk E = i E F F(al , al) (*) < Zo } because the solution
( U, a, a ) is analytic over [ oto + 6), so we can always find a constant 0 < 1 _5 6 such that

F(U,a)(ik,t) < Zo V&& E 6\dl over the interval [to,to + 61)

which implies that the Gaussian points in G\G1 will remain in elastic state over the time interval

b). For any Gaussian point k E 6 such that F(ao ,a')(*k) = Zo and 8oFT(bfk,to)a'(Ik) < 0,

we have

F(VO,a)(Ikto+v)-F2(ua)(&k,to)= j to F(u,a)(8oFT7r+8,FT&r)dt

So if , < 6 is small enough, we have OF 2T'(&k,t) < 0 and (1k, t) = 0 for any t E [to,o + +).

(from the analytic assumption of the gauge function F (a, a) and the analyticity of the solution

functions ( V , a ,a) and the fact that a (Ik, to + 0) = al()) Therefore

F2 (u,o)(4,to+v)-F'(o',a)(4k,to)=• •] (a,a)D5F•'d < 0

i.e.

FP(v,a)(4,to+v) < F 2 (ar,o)(4,to) = Z02

Hence for 9 E [to,to+ 2) we have F(o',a)(i ,t) < Zo , which means that the elastic Gaussian

points of G, remain elastic over the time interval [ to, to + 32).

c). For any k GE , we also have:

F(a, )(&k,to+,)- F(,)(4,,o) = • F(a,)( FT +.FT)dt

Since on 61 we have 69, FT a (4 , to + 0) > 0 , once more by the analyticity of the gauge function

F(o,a) and the continuity of the solution a, a, 6 and a ,we know that on [to,to+v)jfor v small

enough, we have 0oFT 4 > 0, and moreover & cannot vanish, so F (a , a) ( ,FT r + 8.FT & ) = 0.
Hence we have F(a,a) (1k,t) = F(o,a) (fk,to) = Zo, V t E [ to,to + 6 3), which means that the

plastic Gaussian points of GP remain plastic.

So ir we denote by d 2 the set:

2 = {I E 1 8FT (i) a (1) = 0( }

and if G2 is empty, then from the above discussion we can see that the elastic Gaussian point set and

the plastic Gaussian point set determined by the solution (U 1 , al , al ) of problem (5.22) ,, (5.24) will

remain unchanged for a certain period of time [ to, t o + 6). Thus whenever the elastic and the plastic

Gaussian point sets were determined at the time level t = t o + 0 , we can always solve the initial value

problem (5.14),,,(5.16) starting at t = to and forward to the time level to + 6 without violating the

admissible conditions F (c, a) (ai, 1) _< Zo.
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Remark 5.1 If 02 is not empty, we can show that the choice for the Gaussian points of d 2 will

not change the state of the points of d\6 2 . By considering the sign of higher order derivatives of the

function 8.FT(i ,to)Di(!h ,to + 0) , we can also show that there exists a positive number v , such

that for t E [to ,to + v) , the elastic Gaussian points remain elastic and the plastic Gaussian points

remain plastic. The details of the proof can be obtained by slightly modifying the proof in Bonnetier's

thesis [3].

In conclusion, we can always determine the state of each Gaussian point of the set G for a certain

period of time after to by only knowing the history of the solution before to and the information about

the traction function j (z , to + 0). Therefore the problem (5.25) (5.28) always has a unique analytic

solution over some time interval [ to, to+ 6) with the sets (1 and d\G• being modified a little bit if the

set d2 is not empty. Thus we can always solve an initial value problem starting at t = ti and forward

to another time level t = ti+1 when we have some Gaussian points switch their elastic or plastic state.

Then we will use the same method to determine the elastic or plastic state for each Gaussian point for

the time t = tj+1 + 0 , and solve another initial value problem starting at t = t+.1 . The similar results

still hold for the subsequent yieldings. Hence finally we will get a unique solution, piecewise analytic

in time, of the system (4.1) - (4.4) over the time interval [0 ,T ] satisfying the initial value condition

(4.5). This completes our proof of the theorem. 0

6 Energy Estimates

To prove the convergence of the solution for the semi-discrete problem, we need the uniform bound-

edness of the solution. By using the admissible assumptions, we can have the following energy estimate.

Theorem 6.1 There is a positive constant C independent of the finite elenent mesh, such that

II & IlI1(a) II II,,L2(n) II IIL2(), II IIL2(O) - C 11 II IL2(n)

a.e. t E (0,T).

PROOF: Let (U, a, a) be a C+"0 solution of (4.1) (4.4) with the initial condition (4.5) in the

interval [0,T). Then at any Gaussian point ik , from Proposition 2.1, we know that there exists a

constant c independent of the element mesh such that

So
4 4

Tk=-- k=1ITi

By virtue of (4.1), we get

c j(c,)dx< I j(&i7,)dx =)dx (6.1)
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Using Korn's inequality, we have

IIVU112() : c 1 IIo) II t- 11L2(n)

So we finally get

II & II1.1(n) -< C1 I 1iL H(w) (6.2)

From (6.1) and (6.2), we have
IV •2 I,(0) C 11 1IL2(n)II IIL2,(0) < C, I1i 11L2(0)

For the boundedness of the strews, we have

S(&,) = D- &(:ik) if ik is elastic

or

i(1k) = (D - D')-' 0(ik) if ik is plastic

where both D-' and (D - D')-1 are positive definite, and their smallest eigenvalue is bounded below
by a positive constant c2 independent of the value of t , a, a and the element mesh. So we can use the

same argument as the one we used before, and get

C2 j(oa)dz <- j(j,()dz

So

I L2(0) - C2 11 L2(0) 1 & L2 (Q),2() , (6.3)

by using the inequality (6.2).

For the boundedness of the hardening parameter, 11 & JIHr(i) , we can use the fact that

( = 0 if lk is elastic

or

o (0FT(pk) F (4k) ,F (4k) if ik is plastic S(•k)= - .FT(O)O.F (1k)

So
[61 (4t) J2 < 0,FT(1k) 6r(4) 0,F( .2 Vi

- K ,FT(ik)a&OF(Xk) OoF(•&)] vk E C

Using the admissible condition -y -< 1 ,F I , 1 OaF I < P , we then have

[(:E) ]2 _< C [&O(k)]2,

that yields

4 4/r(, )dz = , Wk(6.k) (4•)) _< C F, &k(6 (:ik), &(:Wk C (, Cx
k=1 k=1

By virtue of (6.3), it follows that

f•( •,6i)dx < C 6(,O ) d. < / (iid
• CjiT~T~d ~ rj(fjj)dT

Hence II aIIL2(g) -5 C II.llIL2(0) and the proof is completed. 0
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7 An Equivalent Weak Formulation

The following weak formulation is the key point of our proof for the convergence of the semi-discrete

problem solutions. Based on this formulation, we will be able to identify the equations satisfied by the

limit of the semi-discrete problem solutions.

Denote the set

Kh rh "') S with VkE

Consider then the functions of the following forms

Uh, = E U,"(t)On (z) i= 1,2

ned€
Ch,= Z U' (t) 00.l ~

Ch2= rU t
"neil OX2  (7.1)

,h,; = • (u(t) O(x) " -+ Ui' )( = 1,2

nEAP
ah= a!(t);n(Z) = 1,2,... ru

where U,' (t), • (it), &!' (t) E C.0'0 (I). we have the following theorem.

Theorem 7.1 The semi- discrete initial value problem (4.1) . (4.5) is equivalent to the following prob-

lem:

Seek (U,, Oh ,ah) of the form (7.1) such that for all t E I,

. +1 . )d = (1 , .
Ox1  5X2  Jn E A" (7.2)

'on j8f 2 ,sndd
43 - + Gh2 2  (j2,,On)dx

I. Ox1 IOx2

where

(ah,ah) E Kh Uh E ( HJ(n)) 2  Vt E 1 (7.3)

and
in(ih--C~h,rh -- h)dx+/n (--Ih,Vh--ah)dx<_O V (rh,vh) EKh (7.4)

with C - D- and the initial conditions

{ U(O,Z) = 0
fh(Ox) = 0 (7.5)
ah(O,x) = 0
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PRoor: i) First to show that the solution (U, a, a) of the system (4.1) (4.5) satisfies (7.2) ' (7.5).

Indeed, we have for all t E I,

F('(ak),a(i,)) _< ZO Vk E .

which means (a , a) E K1, . Now suppose at the point ik the material is elastic, then from (4.2), we

have

=0

Obviously, in this case, we have

(i(h&) --C&(1),T(ik) - C'(&ik)) + (-(0,'(~ (1k)) :5 0 . (7.6)

If at the point ik the material is plastic, then from (4.3), we know that there exists a constant A > 0,

such that

(7.7)

where 1' (4h) = i(1k) - C b (1k). On the other hand, since F( o, a) is convex and analytic, we have

(See, e.g. [18] )

F(r,v) - F(u,a) >_ 8F(u,a)T(r _ a) + i9F(a,)T(V _ a)

So if at the point l the material is plastic and (r,,) E 1K , we must have

F(rl(Zk.),/(:ik) )--F( • (ik),O(-i)) =F( r(ik) ,•,(k))- Zo < Z-Zo = 0

Hence •

oF(ff (:L),• (ik) )T(T (4k) _f, (4) ) + 10*F(0 (-4), Ct (4) )T(V, a) P(k) ) <5 0

From (7.7), we can see that (7.6) still holds. Therefore on any T," E Th , we have

IT. (I- C ,r - a)dx + I.(-,v - a)dz

4

= Wk (X(ik)-C6 (4), r(h)- O (4))- ( (•k),r ()- a(h))] : 0
k=1

So

ju ( - Cr - a)dx + j-6tii - a)dx < 0 V (r, v) E Kh

ii ) Second to show that the solution of the system (7.2) - (7.5) is unique. Now suppose we have two

solutions, say (U1 ,or, , a,) and (U2 , 2 ,02) , then by the definition we have

(o,aj) E K Vt E I
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(02,a2) E K1, Vt C I

By virtue of (7.4), it follows that

iM((I -2) - C(& 1 -6 2 ),0 2 -ty)dz + (-(o 1 -6 2 ),a 2 -oi)dz 5 0 ,

which implies

(i - i 2 , c2 - a, )• + (02 [IIv• (u21)l2] +

From (7.2), we can show that
l( 1-2 , O2- Old-T 0

Therefore , we have
d [11 V (u•2 a,) 12 + u1o2 - C121 < 0

We already know that (U 1 ,o1 , ) and (U2,62 ,02 ) satisfy the same initial conditions (7.5), so we

get

11rT (IV~(2  ei) 12 + 12 a 1121 dt < 0
which means {6 = 62 a.e. fl xl (7.8)

01 02

It follows that { 01 = 02
01 &2r a.e. Al x (7.9)

For the strain and displacement function, we know that at any Gaussian point lk , either

S( ) = D - 6 ( ) if ! is elastic

or
i(fk) = D- DO, F(a ,a)O+ F(o, DO)T D 

61)4)

ir lk is plastic. So by (7.8) and (7.9), we have

il = i2,

and hence
U1 = U2

iii ) Finally to show that the solution of the system (7.2) -(7.5) also satisfies (4.1) -(4.5). Indeed, we

have for all t E I,

j(i-Cbr-a)dx+in(-6,v-a)dz<O V (r,v) E Kh
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So for ay Ga laapn pint h, take T(M) = 00(), V(*) -= (M) for all * E • and 96 &k ,ad

F(r(*h),jP(h)) Zo for &= k . Then obviously (r,s) E Kh, and so

(() - C ),7010- a(h)) < 0 - (7.10)

If (h, t) satisfies F (o (&k, t), 0 (&k, t) < Zo, by the continuity of the gauge function F (a, a),

we can conclude from (7.10) that

{ (&1j~t) =Ca.(&j,.t) { a(k,.t) =Di(lk.t)
or (.14i(ilt) = C( tCrt)!= 0

which is just (4.2).

If (&k,t) satisfies F(V(4k 4),o(+ ,t)) = Zo, then from the uniform boundedness, lb(i,) 1 :_

C ill Lo(aG) sad . I (&)1 < C 11 lIL2(o) , we know that a and a are absolutely continuous with

respect to time t. So if we define g(t) = F ( a (&k, t ), a(i•,, t ) ), because F (o, a ) is analytic with

respect to a and a, g(t) is differentiable a.e. on 10,T]. Hence

Uim .9 (t + h) W < 0 because g (t + h) 5 Zo = W()A-.-o h-

.- o(t) -(0- h) > 0 because g(t- h) < Zo = g(t)

d
and so we get j9 (t) = 0, which means

8,F (a (k, ), 004, t) )Tar (4, t)- +&F(o(4t,t),a((4, t) )T&(ik,t) = 0 (7.12)

Inequality (7.10) implies that there exists A (k, t) _ 0 satisfying

i1 (1k 0 -A C 4,t
-a(],) -(4,it) a.F(a(4,t),a(ik,0)

From (7.12) we get

=8F(a(4,t),O(&k,i))T(k,i)

Soif A(-4k,t) > 0, we have

8oF(a(,kt),a(ikt))T, (4,4) > 0

Hence

i(-4,0)- C&F(&k,t) -o,=a) a )
t9, F (a, a)T8F aa

(o)F(o,a)Tr F(Oa)Da, ) )(&,t)
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Solving for # (h, 9) in the first equation, we get

b(,t =(D- DOFOgF2 D
OFT LF + aoF'YD8oF

{F . F(4.)

which is just nothing else but (4.3).

If A (ik,t) = 0, then we have

~a &'(o(•.t).&(*,.t) )Td (44.) = 0

In this case, we again get (4.2) and the proof is completed. 0

8 Convergence Analysis of the Semi-discrete Problem

Let ( U1 ,Gh ,a, ) be the unique solution of the semi-discrete problem (7.2) - (7.5) associated with
the partition TA of the domain A0. Then we have ( Uh , al, , ) satisfying:

I. + UA2-)dZ = ,]n•, lox, 8X j2, ;=

it, -Cb ,r-o h) +l(--&h,v--al)]dzdt 0 V(r",v)EKk (8.2)

with
UA E (Q,,o(flh)) 2 C (HoI(fl)) 2  for all t E I (8.3)

and the initial conditions{h U( 0,z ) = 0(84
I h(0,X) = 0 (8.4)
aA(OZ) = 0

From Theorem 6.1, we know that

V VA, UV, EA, ajA are uniformly bounded

V&h ,6,Uh, 1, &A in LI(I,L 2(l))

Therefore we can extract a subsequence ( See, e.g. [15] & [16] ), such that

VUh, Uh, aOh,,h- - VUU,uoc

weakly* in L° (I, L2(j0)). For the limit functions a, a, e and U, we have the following theorem.
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Theorem 8.1 The limit functions ( U, a, a) is the unique solution of the following problem

J u 1 84$+ )2 d -/j(ji )d:o( -T +o v• • Ec•'(1) (8.5)

SA + &2a2r )d j J= 2,4)dC

a.e. t E I with (u,a) E K, where

K={(,,a) E L(I,L2 (fl))IF )(z,)t)_<Zo a.c. f)x} 1 (8.6)

and the admissible equation

xl[(-C r, r- a) + V- ,-a) I dzdtO V(r,v) E K (8.7)

with
U,& E LOO(I,H01(fl)) a,i^ E,,o, L°°(I,L2(fl)),

and the initial conditions

{ U(,O) = 0
o(X,O) 0 a.e. on 0 (8.8)
a(z,O) 0

PsooF: We will prove this theorem in five steps.

Step 1. To show that the limit functions. (U, u , a) also satisfy the initial condition (8.8). When

choosing the subsequence from ( U , o, ak) we can also assume that

Uh,UOh U,U weakly' in La(I,Hl(fl)) , (8.9)

and U1 -- U weakly inH'(flxI),

which implies that U1, , U E AC (I, L2(fl)), ( See, e.g. 115] Chapter 11). So for any 6 (z) E L2 (fl),

we can take 0 (z, t) = t T 0(z) ; and get

0P (z,t) E L2 (I,L 2(fl))

at

Since U(z,t) E AC(I,L 2(fl)), U(x,O) is well defined and

U(z,0)OG(T) =- dt- _ U(z,t)iO(zt)dt

a.e. z in fl. Soweget

j U(z,O)O(z)dx = -/I(,) U )0 (z,t)
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Similarly for the function UA (z , ), we have

'U&(z,O)#(x)dx Uj

Thus, by (8.9), we get

S(2,,0)h(z =W U(:,0) (X)dz VO (z) 6 LE2(0)

which means that the subsequence U& (z,O) - U (z:,0) weakly in L 2(fl) , and so we have

U (z,O) = 0 a.e. on A . Similarly we can show that a (z,O) = 0, a (z,O) = 0 a.e. on fl, and

all the initial conditions are satisfied.

Step 2. To show the system (8.5) holds. Indeed, for any piecewise bilinear function & E Q1,, (fl/),

we have

a,,4. )d.-
f-In Ox ,,, WX2 " of•/)zVOI E QI(f•h) (8.10)

a.e. t E I . So for any 0 (x,t) E CO° (fl) x CO (I) , we can find a sequence of simple abstract

functions 41(z,t) E Leo( I, Q, 0 (OA)nH.(0)) such that $&(z,t) converges to 4(zt) strongly

in H(flx I), i.e.
=-- 0 (8.11)

and
lim nt )2dZdt -0 i=1,2

A-0O .Ix'O,-8 zi - =1,xi(.2

For any i,j,k 1,2, we have

J okj dz dt - drJ 0'0 -dx dt
kOx O(k O 4 dd(8.13)

From the weak * convergence of the sequence oh , the first term of the right hand side of (8.13) will

tend to zero as h -+ 0. For the second term of the right hand side of (8.13) we have the following

inequality:

dfkl 4h 84 dxdt 1:< 11: JL,, 1)

SIn I Gh, NI(xI) - F t k- 4) IITIHa,(OxI)XI

From energy estimates, we know that n jhi IIL2(DlxI) is uniformly bounded. Meanwhile, from the strong

H' convergence of 4, to 4), we can see that the second term of the right hand side of (8.13) will also

tend to zero. Obviously

mf-0 xI(jij,4h)dxdt =i xI( Jfi, .)dzdt i= 1,2
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So as h ---+ 0, we can get, from (8.10), that

J . + . )7,(ji..,)dzS1 0&2 dv Cc co'(1) x Ca(I)

&ean (8.5) ( 2  + a = 0# = & ( 0)d

which means (8.5) holds.

Step 3. lb show that the limit function (U,, a) still satisfies (8.7). Let (r, S) E K, then we
can claim that there exists a sequence ( r, ,) E K1, such that

stronglyin L 2 (flx )
Irk ----. V

Indeed, actually we can construct such a sequence as follows: consider a sequence of mollifiers J, defined

on 2 x R ( See [1) for details ). Then we have

max Jg ()=Je (0) =k

zeR 2 x RU C

and

IR2xR J,.(z)d = 1

Let C, I be the two sets such that fl CC 1), ICC! and dist(fl,8h) > 1, dist(1,&i) > 1.

Define r(z)=v(x)= 0 forall zE (R 2 xRl)\(flX). Forany zE flx I and e < 1, take

e .()) = JR 2 xRJ(y)r(z- ) d= j J,(y)r(z-y)dy ,

S(Z) = JRxRJ,(y),(z-y)dy = fLXI J,(y)v(z-.p)dy

Then by Lemma 2.18 of 11], we have r,(z), P.(z) E Cr(ho xl) when e is smal enough , and r, -: r,

v.- v strongly in L2 (fl x I) as c - 0. On the other hand, from the Jenssen's Inequality (See, for

example [7] or [161 ), for any convex function G (u) and any integrable function u (z , t) over f x I,

we have

G( uI) (., t)dzdt) x ) G(u(zt))dzdt (8.14)

or equivalently

G( x~ ~~z dt: - m{x) G(Cm(flxI}u(z,t))dzdt ,(8.15)

where m (A x I) is the measure of the set 0 x I and C is an arbitrary constant. So for our gauge

function F(a,a) and functions Tr(z) and vP (z), we have

~r((z),v,(z) ) = F( fx! S,(y)r"(z- /)dy , fAX I J,(y) L (z- y) dy2

< I~( x ) xF(C'm((•x)J,(y)r(z-y)'C'm(!fx!)J,(y)v(z-y))dy
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* If wechoose C.= (3J w•would have Cm(A xf).(y) _5 1 V Y E A . Sofromthe

convexity of the pue function F(r,.v) ad the assumption: F(0 0) = 0 weget

F(kr(z- y), AY(- 1 ))

= F( k. r( - y)+ (I- As)0, c, v(z- )+ ( - i.)0)

_< A.F(r(z-p),v(z-y))+(1-A,)rF(0,0)= AF(T(z-p),v(z-jy)

where 0 < A = Cg m(A x f) J,(j) < 1. Hence we get

F(r.(x,.v.,(z))<5 1X J.y) F(r(z,- y).&(z - y)) dy<5 So .x J.(y) dy = Zo

which implies (r,,v,) e K. Because (E(p), (,)) • O -( x I), for any t E I we can interpolate

(f,(y) , c(y) ) at the Gaussian points by the basis function (;) on TA and construct a sequence of

simple abstract functions (r ", v") such that

(T,vhE Kh V tEI

and (rm,,vY ) - (rv) strongly in L2(f) x I)

Taking (r,v) = (rvi ) in (8.2), we get

J (hi-Cuk ,Th -ul )ddt- (kv,vh-oA)ddt < 0

which can be written in the form

I(( -[C ark&)-(OA,&, )]dzdt - ](ar,,idzdt

2~ Io -[(Ca" or") +1(0"' o")I dz dt :5 0

The weak* convergence of the sequence (Uk,,o .ak) and the strong convergence of the sequence

(r,, 1, ) will ensure that the first term tends as h ---. 0 to

the second term is equal to

in x I(f,,)dzdt, and hence tends to jOxI (f,U)dxdt

Because the initial conditions: o ( z,0) = 0 , a ( z, 0) = 0, the third term is equal to

c-[v , (T)II + ]Oh (T) 2(n)]

and and Liminf I v'C-o"h (T) 12•(n) -> 1 v'C-" a(T) 112

umr inf II at,(T) 12n) > I1a (T) 12l)
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So we end up as h --- 0 with

j[(I - Ca, T)-(&, V)] - (fI' Y + % vcu (T) 1L2( + 11 a(T) 112~o) <0
OX n I 2 JW•(n) ]L(0

FRom (8.5) and the fact that

•Ill(T)lla(o) = J(&,a)dzdt

and ~ I '/?iv(T)2 = I

we can finally get (8.7).

Step 4. To show that (or,a) E K, i.e. F(oa) <Z ,o a.e. on f x I. Let Pk : R 3 x Rm
1L3 X itn, be the projection operator on the convex set

k (ra) E W xR" I F(r,.) -< Z}

For the convex set R' we can use the projection theorem and get that for any (a, a) ER3 x R"' and

any (r, P '-k,

[[:]a - l( :J A- [ ' -J
Therefore we get

f'rt[ a tO][J<L0 V (r,P) E
For any t E I , let bh and &A be the piecewise constant functions on fl such that on each rectangular
element T. their values are defined by:

ah := E -Lkh(1k) t & :- -E'h(k- ) . (8.16)

k=I a ak. S"

where S. is the area of the rectangular element Ta • Then from the fact that the gauge function

F(oa,) is convex and

we have 4 k4

F(&.& 6)5 _< ! F( a(&k), ah(ik) ) < 1 L Z=.o
k=1 k=1 a

i.e.

(&hth) E k a.e. on O2xI

Consequently we have

[ ! p ] r &h ] p ( ] 0 a.e. onfRxI (8.17)
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For the fudon -,we can Aind a sequence of abstract functi,[s such that

for any ixed t E t piecewise constant, and as h --- 0:

[ ]L' .[]- . (8.18)

Now we can rewrite (8.17) and get

J: +a ii8.19)
Pi 4TJ[kPk[UJ0o

Integrating the first term of (8.19) over ft x I,

LV. 17] 'Z [ a']] JOXIl 7AJ a'[ k [Ok

The second term of the right hand side of the above emat~on is equal to zero, because (tr ,fi) are

piecewise constant and ( &k, 6h ) are defined by (8.16). So from (8.19) we get

S a - a p h a h -P

From (8.18) we have, as h -- 0,

2X -k 'e , k a 0

F J= P [ ]a.e. on flx/

and so (o,a) E K,or F(o,a)_ : ZO a.e. on flxI.

Step 5. The proof of the uniqueness follows exactly as the proof of the Theorem 7.1 and this completes

the proof of the theorem. 0

For the solution of (8.5)-(8.8), we have the following result:

Proposition 8.1 The solution of the equation system (8.5),,- (8.8) is also the solution of the system

(3.2) - (S.10).
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PrOOF: Here we only need to show that (8.2) (8.3) imply the existence of the scalar function

A(X,t) _ 0 such that

i - C& 0 E(.0

{a=0 
4.e. on (8.20)

( - C& A & DF
S -a.e. on P (8.21)

a = -,AB 0 F

whene we= {(zt) E n x I F(oa)(zt) < ZD or 8_FTb(zt) • 0}

= (Z ) E fix! I F(u,a)(z,f)= Zo and &FTfr(z,t) > 0}

Let 6 > 0 and denote by Qs ( zo, to) a cube of side length 6 centered at ( zo, to). Then for any

(r,v) E K,wechoose (f,P) such that

{ , P) = (a,a) in (f)xl)\Q (zo,to)

(,,,p)= (7,,Y) in Q,(zo,to)

Obviously we have (÷ , il) E K , and (8.3) yields

J,(zo,,oC) [( - rO,T - or)+(-6,,Y - a)] da.dt < 0 V-(r,v) E K

Using the Lebesgue Differentiation Theorem ( See, for example, [17] ), we get as 6 --- 0

(.i- C&,r- a)+ (-&,v- a)v - 0 a.e. on fAxI V(Tr,v) E K

Then using the same approach as we used in the step 3 of the proof of the Theorem 7.1, we can show that

there exists a A ( z, t ) > 0 such that (8.20) and (8.21) hold. 0

Remark 8.1 We can easily see that this method can be extended to the cases where the displacement

and stress functions are approximated by piecewise higher order polynomial functions. For instance, if

displacement function is approximated by piecewise Q2 or Q2 functions, we can approximate the

corresponding stress function by piecewise Qz functions, and in this case, nine Gaussian points will be

used for the constitutive equations.

Remark 8.2 Unfortunately this semi-discrete approximation method can only be directly applied to

the cases where the partition of the domain fl only contains rectangular and parallelogram elements.

However, as we will see in the following section, for cases where the partition of the domain contains

some other type of elements, similar approach can be used to develop some higher order methods.
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9 Generalization to the Triangular Elements

It is desirable to find a method which can be applied to triangular elements and that also has the

same properties as rectangular or parallelogram elements. Then we would be able to treat cases where

A is any polygonal domain. In this section, we will briefly discuss a method of using piecewise higher

order polynomials over triangular elements.

Consider the natural triangle of area A as

shown in Figure 9.1, where the natural coordi-

nates (o,•,y) are:

Al ~A2  A3

A' A' A

where A,, A2 , A3 and A are the area of each A A

triangles. Hence we have:

OA 1+(+7-1)

Now consider another standard triangle on 8 P

the X - Y plane as shown in Figure9.2, and FIGUIRE 9.1 Natural Triangle

take any point ( , y) inside the triangle, and Coordinates

v, Then a simple calculation shows:

AI = -r

A1 =
A, y

2

L xTherefore we get a one-to-one correspon-
-1 0 1 dence between the X-Y coordinate system and

FIGURE 9.2 Standard Triangle the natural coordinate system given by the fol-

on the X-Y Plane lowing mapping functions:

1

1 1-

17 1
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Therefore:

J f (x,y)dz dy ='a7j(a*,3,y)dA

with dA = 2Adadfl.

Some symmetrical Gaussian quadrature rules were discussed in [5], [6] and [9] , where an integration

is performed by a Gaussian quadrature rule of the form:

L f(a,#,7)dA = A EW af(oi,'fti) . (9.2)

A iml

In (9.2), (a,, , -yj) are the natural coordinates of the ith Gaussian point, wi the corresponding

Gaussian weight and ng is the number of Gaussian points used in the rule.

Table 9.1 Symmetrical Gaussian Quadrature Rules

p value nj weight alpha beta gamma
1 1 1.0 1/3 1/3 1/3
2 3 1/3 2/3 1/6 1/6
4 6 0.223381590 0.108103018 0.445948491 0.445948491

0.109951744 0.816847573 0.091576214 0.091576214
5 7 0.225000000 0.333333333 0.333333333 0.333333333

0.132394152 0.059715872 0.470142064 0.470142064
0.125939181 0.797426985 0.101286507 0.101286507

6 12 0.116786276 0.501426509 0.249286745 0.249286745
0.050844906 0.873821971 0.063089014 0.063089014
0.082851076 0.053145050 0.310352451 0.636502499

8 16 0.144315677 0.333333333 0.333333333 0.333333333
0.095091634 0.081414823 0.459292588 0.459292588
0.103217371 0.658861384 0.170569308 0.170569308
0.032458498 0.898905543 0.050547228 0.050547228

1 0.027230314 0.008394777 0.263112830 0.728492393
9 19 0.097135796 0.333333333 0.333333333 0.333333333

0.031334700 0.020634962 0.489682520 0.489682520
0.077827541 0.125820817 0.437089591 0.437089591
0.079647739 0.623592929 3.188203536 0.188203536
0.025577676 0.910540973 0.044729513 0.044729513
0.043283539 0.036838412 I 0.221962989 0.741198599

A table of Gaussian quadrature rules of the form (9.2) for the polynomials of degree 1-20 was

listed in [6]. Different from the Gaussian quadrature rules over rectangles, the Gaussian quadrature

rules presented in [6] have some negative weight coefficients Wi or some Gaussian points not lying

inside the triangle A for some p values. In our case we cannot use Gaussian quadrature rules with

negative weights, because, as we have seen ;n the previous discussion, the positiveness of the weight

coefficients plays a very important role in the proofs of many theorems. We also cannot use those

Gaussian quadrature rules with some Gaussian points lying outside the triangle, because we have to use

extrapolation to determine the stress and hardening parameter functions. So in Table9.1 we only list

the rules with positive weights and all Gaussian points inside the triangle A.
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hn Table 9.1, for each weight if we have a = = 7 ,then there is only one Gaussian point
corresponding to that weight coefficient. If we have a 0 = - , then there are =C3 = 3 Gausian

points corresponding to that weight coefficient . Finally if we have a 0 0:0 -, then there are C3 = 6

Gaussian points corresponding to that weight coefficient. Here we only list the weights and the location
of the Gaussian points for the p values up to 9, for more data with 9 < p:5 20 see [6].

Now we can discuss the selection of the finite dimensional spaces for the displacement function
U (z, t) and the stress and hardening parameter functions u (z, t), a (z , t). The strategy is as follows:
the finite dimensional spaces for U, a and a should be selected in such a way that

i). The stress and hardening parameter functions a, a will be uniquely determined by their values
at the ng Gaussian points. ( Assume here we want to use ng Gaussian Points)

ii ). The degree of the polynomials of functions: ar2 , 2 and a • e(U) must be less than or equal to
the p value listed in Table9.1 corresponding to the number ngg.

Table 9.2 gives a list nfa possible selections of the spaces for U, a and a. Here we always select
the aame spaces for a and a.

Table 9.2 A Possible Selection of the Spaces for U, a and a.

ng D.O.P. Space for U Space for a and a
1 1 A1P03 2 A A
6 4 PA P2

For the complete polynomial subspaces, we can only get these three possible combinations. How-

ever, it is not necessary to always use complete polynomial subspaces for the displacement , stress

and hardening functions. As a matter in fact, by using a Gaussian quadrature rule based on some
non-complete polynomial subspaces, we can also get some higher order spaces for U, a and a.

It is also not necessary to always choose piecewise polynomial functions as the subspace for the
stress and hardening parameter functions. Since we don't require that o, a are CO functions over the

domain R . Actually we can select any n dimensional subspace 8S, E L2(fl) over each rectangle or

triangle element, if this subspace has the following properties:

i ). The stress and hardening parameter functions in this subspace will be uniquely determined by their

values at some sampling points xk k = 1,... ,n.

ii ). There is a quadrature rule over the rectangle or triangle element with non-negative weights wk
such that

n

]f (X,y)dzdy = E W f(.T, Yk)
k=1
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for all the f (x,) of the forms:

((g(z,y)) 2

where U (z , V) is any displacement function in its finite dimensional space and g (z , y) is any function

in the space S3 .

Finally we would like to indicate that the ideal of using Gaussian point may also be applied to the

cases where the partition of the domain contains some curved elements. The convergence result we get

here is only in the weak L 2 (rj X I) sense, which is obviously not good enough for real computational

purpose. However, we can prove that for some special constitutive laws, such as bilinear isotropic or
bilinear kinematic hardening laws, we can actually get strong L 2 (fl X I) convergence. For more general

constitutive laws, the strong convergence is still achievable, if we use some extra assumptions on the the

body traction functions.
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